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Summary
The dissociation constants of some hydro-
carbon derivatives of boric acid have been
determined. These constants have been com-
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pared and discussed on the basis of the reso-
nances and negativities of the various groups
involved.
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Properties of Electrolytic Solutions.

XI. The Temperature Coeflicient of

Conductance

By Raymonp M. Fuoss

I. Introduction

It has been shown! that the conductance of
many electrolytes up to concentrations corre-
sponding to the minimum in conductance can be
described in terms of the hypothesis that free ions,
ion pairs and ion triples are present. The con-
stants describing the equilibria have been calcu-
lated as functions of ion size,? dielectric constant
and temperature. It should therefore be possible
to calculate the temperature coefficient of com-
ductance in the above range of concentratiomn.
1n this paper we shall derive for the case of weakly
dissociated electrolytes an explicit expression for
the following function

%ad% = f(e,D, T, ¢, n)
where A = equivalent conductance, T' = tempera-
ture, a = ion size, D = dielectric constant, ¢ ==
concentration and n = solvent viscosity.

II. Calculation of the Temperature Coefficient

For the case of binary electrolytes in solvents
of dielectric constant under 10, the conductance
over a considerable concentration range is given
by the following limiting form of the general
conductance equation

Ag(e) = 20 VE/Ve + ( VE/D) Ve ()
Here Ao and o are limiting conductances for the
electrolytes (A+) (B’) and (A;B™) (ABy), respec-

(1) Fuoss and Kraus, Tuis JOUurNaAL, 85, 476, 1019, 2387 (1933).

(2) The '‘ion size'' is an arbitrary constant calculated from experi-
mentally determined dissociation constants. It gives the radius of
an imaginary particle whose properties duplicate more or leus
quantitatively those of the real solute. While the dependence of a
on the solvent and solute is gradually becoming clearer as more data
are obtained, at present it is only possible to predict the order of
magnitude and sometimes the sequence of a-values for differert
solvents or solutes from independent data. The parameter includes
both the size of the lattice ion and the apparent increase of size
of the latter due to solvation. (By solvation, we mean either actusl
compound formation or simply orientation of solvent dipoles in the
ionic field, or both.)

tively, and K and k are the equilibrium constants?
for the reactions

At + B’ —= AB, and

AB + A* —= A,B*, AB 4+ B’ ——= AB,
The function g(c) takes into account the average
effects of the free ions on mobility and thermo-
dynamic potential, and reduces to unity in the
case of small free ion concentrations. It has a
very small temperature coefficient; for tetrabutyl-
ammonium nitrate in anisole (D = 4.29 at 25°),
for example, at 10— V, it varied from 0.942 at 95°
to 0.951 at —33° or by less than 0.019, per
degree. We shall therefore neglect its change
with temperature.
Writing (1) in the form

A = A(Ao, No, K, k, ©)
we obtain the total differential
OA dXo

dma _1 (o dso
ar ‘A(aAodTJ’aToﬁ"’
oA dK . oA dk

Kartsartaar) ©
The last term in the parentheses is negligible; it
furnishes in the final result a term of the order of
the coefficient of cubical expansion of the solvent
(about 0.1%), multiplied by (d In A/d In ¢) and
the latter varies from (—1/;) through zero to about
(41/s) in the concentration range considered.
For the partial derivatives we obtain from (1)
oA/ = VE/g e  oa/one = VEe/kg
OA/OK = A/2K OA/Ok = — N VEe/k%
In order to evaluate dA./dT and dho/d7, we
shall assume that the products A¢n and Ay are
independent of temperature,* which leads to the
result that

2 dAg
OAo dT

OA dXo

Ono AT

dlnng
a7

din ¢

=4 a7

= A
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(3) For simplicity, we are retaining our earlier assumption that
[A:B+] = [AB3].
(4) Walden, Z. physik. Chem., 98, 257 (1912).
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This term accounts for the change of conductance
due to the change of fluidity ¢ = 1/7 of the sol-
vent. The remaining terms of (2) are due to the
change produced in the number of conducting
particles by the shift of the equilibria with tem-
perature.

In the range of dielectric constant values where
(1) applies, we may use the following expression®
for K

. _47rNa3e_" 4
I‘I_h—mOOb(l'*'b_i"") @

where N is Avogadro’s number and b=e?/aDkT,
with e = 4.574 X 10~ e.s.u, and kb = 1.372 X
107 erg/1°. Differentiating (4) logarithmi-
cally, under the assumption that ¢ is independeni
of the temperature, yields

din K 1 D dD
—ar - =‘T'(1 + TdT) (”
In a later section, we shall derive the following

asymptotic expansion for %
64w Nad exp (bs/2)

~3+067) ®

Bl =

3000 bs?
(1+g+)u>10 @
where b; = €?/azDkT. (The ion size a; which

determines the triple ion equilibrium is, in gen-
eral, different from a, the parameter for the
simple equilibrium. This is probably due to the
fact that the actual positive and negative ions
are not equal in size.) On differentiating (6),°
we obtain’

dink T dD b

ar T( +DdT)(3 2=

8 —2
S +om) o

Both (5) and (6) contain explicitly the change
of dielectric constant with temperature. For
solvents whose molecular polarization
D-1M
D+2p
(M = molecular weight, p = density) has the
following form as a function of temperature

P = Py + (B/T) €)
the coefficient dD/dT" can be calculated from the
equation
aD —p(D'ﬂ
dT M — pP

P =

B p
(f+ra+ase-2802) @

(5) Fuoss and Kraus, THis JourNaL, 85, 1019 (1933); Equation
{8), together with the asymptotic expansion for Q(b) given on p. 1022.

(6) Ritt, Bull. Am. Math. Soc., 24, 225 (1918).

{7) lncidentally, (7) also serves indirectly to evaluate the ratio
No/Ae. From the data, an experimental value of d In 2/dT can be
ohtained, which, from (7) and & = €2/a:DkT gives a value for aa.
Then Mo Aq is ¢valttated from the relation Ae/ho = cmin/k.

RavmonDp M. Fvoss
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The density as a fumetion of temperature is
assumed to be given by the empirical equation

p = pu/{l + aft — 25} + Bl — 25]9) (10).
If we substitute (3’), (5) and (7) in (2), we obtain

1 dA dknp 1 din D _4 _
xar = 3 (1+d1nT)(b 1 b)

2T( tamr(e-emg)

4 =2VEKe/ Akg
On substituting (1) in the above expression for
Ag(c), we obtain
A7 =1+ (kAo/A)

The temperature coefficient (11) is made up of
three terms, arising from change with temperature
of fluidity and of the equilibrium constants K and
k, respectively. The first term may be cateulated
when the constants @, b, ¢ and 4 for the fluidity
equation

¢=[T*—aT + b1+ T —cl/d (12)
are known. It has been shown® that (12) repro-
duces observed fluidity values with a remarkable
degree of accuracy and, furthermore, that it is
possible to derive the constants® from the struc-
tural formula of the solvent by certain addition
rules. For highly dissociated salts (small values
of b), the fluidity term is, of course, the most
important part of the conductance-temperature
coefficient. In solvents of low dielectric constant,
however, the dissociation terms must also be
considered, because they reach the same order of
magnitude as the first term. The contribution
from K is independent of concentration, but the &
term increases numerically with the concentra-
tion. Since these last two terms have opposite
signs, it is possible to find a concentration such
that d tn ¢/dT = dIn A/dT. At higher concen-
trations the conductance coefficient is less than
the fluidity coefficient.

As a function of temperature, (d ln A/dT)
varies with 7 chiefly through the variation of (d In
¢/dT) with T: the dissociation terms may be
written as proportional to

din K db dink db;
and

s dT db, dT
except for terms of higher order which arise from
the temperature variation of (1 + klAa/Aec) L
The coefficients of db/dT" and dbs;/dT in these

(8) Bingham, “Fluidity and Plastieity,” McGraw-Hill Book Co.,
Inc., 1922, p, 137.

(9) Bingham and Spoomner, J. Rheology, 8, 221 (1932); Physics, 4,
387 (1933); Bingham and Ceddes, ibid., 5, 42 (1934),

where
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expressions are practically” codstant, leaving the
latter to control the variation. But & (or bs)
contains (D7) ~!and D decreases; in general, as T
increases, so that the product becomes relatively
insensitive to the tetaperature.

In the following paper of this series, experi-
merital data on the temperatire coefficients for
several salts in anisole will be presented-and' com-
pared with the above theoretical discussion; [t
should be emphasized that the formulas apply
only to conductance data in the range of concen-
tration and dielectric constarit where (1) repro-
duces observed values:

III. Asymptotic Expansion. for ks

We sliall now derive the expansion (6). for tlie
triple ion constdant which was used above. The
final formula reproduces-the previous valies of.log
k, -which were obtained by planimeter integration;
to within a - few hundredths of a logarithm unit for
values of 832 /10.1

The general formula for % in our fourth paper!!
contains- an error which, fortunately,. does mot
affect the results: the upper limit of integratior
for 8 should not extend to = for all values of the
distance . The limits are 0 and = for 72 2a and
0'and 27/3 for r = a. For 2a>7r2d, the upper
limit is arc cos(r/2a). Integrating from (27/3)
to = contributes a. very small amount to: the
integral, because the integrand Becomes unity for
r = a, § = 2r/3 atid approaches’ zeto' exponeni:
tially for larger valiies. Practically” the entire
value of the integral for large (7. e., 210) values
of b comes from values of the integrand in- the
neighborhood of r = @, 6 = 0.

If distances are measured’in multiples of a, we
have then

9rNat (X ar/3 b
-1 o 2THE 2 ! 9 _
k 1000 _J; “dxj(: exp (x
b

)"sin 6 do

(1 4+ x® + 2% cos 6}/ (13)

2»Na3I{b)/1000

In (13), k—!is represented as the voliime underla
surface in. the x-6 plane. As pointed out in the
previous paragraph, this volume has.an exponen-
tial peak near the point (1,0): we therefore look:

(10) For simplicity, we shall dfop the subscript on by throughout’
this section.
(11) Fuoss and Kraus, THis JourRNaL, 86, 2387 (1933).
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for the asymptotic expansion!? of £~! by inte-
grating approximately near this-point.
Introducing new variables § and e by the equa-

tions
§ =x—1
e =6—0

we find for the integration near ¢ = 0 the expres-

sion
2
eb/2 J: € (1 - e—)e“’be’/l!i de
(0} 6

which is practically eqital to

SN T
For the integration near § = 0, we have
ﬁo)gl + 25 + %) —3b8/4°ds
which gives:
s(+2+5+.) (15)

Combiningr, the above results, we obtain
16) ~ e (14 5+ 067) (o)
and
LA gl— 21nb +
In (i +2+ o(b-Z))

which: is the result: used’ above: i deriving (7).
The retative erfor in usidg (17) itigtead: of the
planimeéter Method: to eviliate the logarithm of &
ig-oft the-order of 52, because the lewdidg teriti of
(17) i8-5/2 antd the ervor is it terms contaiing b2
irii the! dettosthingtor.

—lnk~In

(17

Summary

1. A theoretical derivation of the temperature
coefficient of the conductamce of electrolytes: in
solventsiof low dielectric constant is:presented:

2. This' coefficient is showm: to contain: three
terms: a viscosity tern and two terms arising
from the shift of the simpler ionic equilibria with
temperature.

3: The dependence of the coefficient on: tem-
perature and concentration is discussed:

4. An asymptotic expansion for the calculation
of the triple ion constant, valid«fot solvedits of di-
electric constant under 10, is obtained:
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(12) Fuoss, sbsd,, 56, 1030 (1934).



