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Summary 
The dissociation constants of some hydro­

carbon derivatives of boric acid have been 
determined. These constants have been com-

I. Introduction 
It has been shown1 that the conductance of 

many electrolytes up to concentrations corre­
sponding to the minimum in conductance can be 
described in terms of the hypothesis that free ions, 
ion pairs and ion triples are present. The con­
stants describing the equilibria have been calcu­
lated as functions of ion size,2 dielectric constant 
and temperature. It should therefore be possible 
to calculate the temperature coefficient of con­
ductance in the above range of concentration. 
In this paper we shall derive for the case of weakly 
dissociated electrolytes an explicit expression for 
the following function 

I ^ =f(a, D, T, cr,) 

where A = equivalent conductance, T = tempera­
ture, a = ion size, D = dielectric constant, c -= 
concentration and -q = solvent viscosity. 

II. Calculation of the Temperature Coefficient 

For the case of binary electrolytes in solvents 
of dielectric constant under 10, the conductance 
over a considerable concentration range is given 
by the following limiting form of the general 
conductance equation 

Af(C) = A0 VK/Vc + (uVK/k) Vc (1) 

Here A0 and X0 are limiting conductances for the 
electrolytes (A+) (B') and (A2B+) (ABa), respec-

(1) Fuoss and Kraus, THIS JOURNAL, 58, 476, 1019, 2387 (1933). 
(2) The "ion size" is an arbitrary constant calculated from experi­

mentally determined dissociation constants. I t gives the radius of 
an imaginary particle whose properties duplicate more or lens 
quantitatively those of the real solute. While the dependence of a 
on the solvent and solute is gradually becoming clearer as more data 
are obtained, at present it is only possible to predict the order of 
magnitude and sometimes the sequence of a-values for different 
solvents or solutes from independent data. The parameter includes 
both the size of the lattice ion and the apparent increase of si2e 
of the latter due to solvation. (By solvation, we mean either actual 
compound formation or simply orientation of solvent dipoles in the 
ionic field, or both.) 

pared and discussed on the basis of the reso­
nances and negativities of the various groups 
involved. 
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tively, and K and k are the equilibrium constants3 

for the reactions 
A+ + B' " ^ AB, and 

A B + A + ^ ± A 2 B + , AB + B'^=±:AB; 

The function g(c) takes into account the average 
effects of the free ions on mobility and thermo­
dynamic potential, and reduces to unity in the 
case of small free ion concentrations. It has a 
very small temperature coefficient; for tetrabutyl-
ammonium nitrate in anisole (D = 4.29 at 25°), 
for example, at 10 - 3 N, it varied from 0.942 at 95° 
to 0.951 at - 3 3 ° or by less than 0.01% per 
degree. We shall therefore neglect its change 
with temperature. 

Writing (1) in the form 
A = A(A0, X0, K, k, c) 

we obtain the total differential 
din A = I /5A_ dAo &A dXo 

AT A d̂Ao AT + dXo AT + 

d A d K d A d ^ d A d c X 
bKAT + HkAT + be dry (2) 

The last term in the parentheses is negligible; it 
furnishes in the final result a term of the order of 
the coefficient of cubical expansion of the solvent 
(about 0.1%), multiplied by (d In A/d In c) and 
the latter varies from (— V2) through zero to about 
(+1A) m the concentration range considered. 

For the partial derivatives we obtain from (1) 
dA/dXo = VK/g Vc dA/dXo = VKc/hg 

&A/cXK = K/2K Z>A/dk = - X0 VKc/k2g 

In order to evaluate 6.A0/dT and dX0/dr, we 
shall assume that the products A0T) and \0t] are 
independent of temperature,4 which leads to the 
result that 

dA dAo d_A_ dXo _ _ . d In q d In <p . . 
dA» AT + d\0 d.r AT ~~AT~ (3 ; 

(3) For simplicity, we are retaining our earlier assumption that 
[AiB+] = [ABs]. 

(4) Walden, Z. physik. Chem., 78, 257 (1912). 
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This term accounts for the change of conductance 
due to the change of fluidity <p = l/i? of the sol­
vent. The remaining terms of (2) are due to the 
change produced in the number of conducting 
particles by the shift of the equilibria with tem­
perature. 

In the range of dielectric constant values where 
(1) applies, we may use the following expression5 

for K' 
4:TrNas eb /, , 4 

K-1 

(>+{ + •••) (4) 
1000 b 

where TV is Avogadro's number and b = e2/aDhT, 
with e = 4.774 X K)-10 e. s. u. and k = 1.372 X 
10-w erg/l° . Differentiating (4) logarithmi­
cally, under the assumption that a is independent 
of the temperature, yields 

4-ii*-*(i + ?g) (—-1 + «")« 
In a later section, we shall derive the following 
asymptotic expansion for k 

64x Na* exp (6s/2) 
ft-1 = 3000 V 

(1+!s + . . . ) , 5 s > 1 0 (6) 

where b3 = e2/asDkT. (The ion size a3 which 
determines the triple ion equilibrium is, in gen­
eral, different from a, the parameter for the 
simple equilibrium. This is probably due to the 
fact that the actual positive and negative ions 
are not equal in size.) On differentiating (6),6 

we obtain' 
d i n , 

dT 
l(l + TAD\/bJ_ 
T\ D ATJ \2 

fc + 0 M (7) 

Both (5) and (6) contain explicitly the change 
of dielectric constant with temperature. For 
solvents whose molecular polarization 

p = D ~ l M 

D +2 p 

(M = molecular weight, p = density) has the 
following form as a function of temperature 

P=P,+ {B/T) (8) 
the coefficient dD/dT can be calculated from the 
equation 
AD _ 
dT ~ M 

_„(£> + 2) / B O \ 
(9) 

(5) Fuoss and Kraus, T H I S JOURNAL, 65, 1019 (1933); Equation 
(6), together with the asymptotic expansion for Q(b) given on p. 1022. 

(6) Ritt, Bull. Am. Math. Soc, 24, 225 (1918). 
(7) Incidentally, (7) also serves indirectly to evaluate the ratio 

\o/Ao. From the data, an experimental value of d In k/dT can be 
obtained, which, from (7) and In = ^/azDkT gives a value for 03. 
Then Xo, Ao is evaluated from the relation Ao/\u = cminfk. 

The density as a fitaefcioii of temperature is 
assumed to be given by the empirical equation 

P = W(I + a[t - 25} + m - 25P) (10), 

If we substitute (3), (5) and (7) ia (2), we obtain 
1_ dA din v J_ / din PX/ _ _ 4\ _ 
AdT dT ~*~ 2T\ ^ din Tj\ b) 

«• (• + !£?)(•-«-£) <"' 
where 

A = X0 VKC/Akg 

On substituting (1) in the above expression for 
Ag(c), we obtain 

A'1 = 1 + (ftAo/Xoc) 

The temperature coefficient (11) is made up of 
three terms, arising from change with temperature 
of fluidity and of the equilibrium constants K and 
k, respectively. The first term may be calculated 
when the constants a, b, c and d for the fluidity 
equation 

<p = [(T* - aT + bfh + T- c]/A (12) 

are known. It has been shown8 that (12) repro­
duces observed fluidity values with a remarkable 
degree of accuracy and, furthermore, that it is 
possible to derive the constants9 from the struc­
tural formula of the solvent by certain addition 
rules. For highly dissociated salts (small values 
of b), the fluidity term is, of course, the most 
important part of the conductance-temperature 
coefficient. In solvents of low dielectric constant, 
however, the dissociation terms must also be 
considered, because they reach the same order of 
magnitude as the first term. The contribution 
from K is independent of concentration, but the k 
term increases numerically with the concentra­
tion. Since these last two terms have opposite 
signs, it is possible to find a concentration such 
that d In p/dT = d In A./&T. At higher concen­
trations the conductance coefficient is less than 
the fluidity coefficient. 

As a function of temperature, (d In A./6T) 
varies with T chiefly through the variation of (d In 
(p/dT) with T: the dissociation terms may be 
written as proportional to 

din K d* d i n * db, 
db dT d&3 d r 

except for terms of higher order which arise from 
the temperature variation of (1 + Ma/Xoc)_1. 
The coefficients of db/dT and db$/dT in these 

(8) Bingham, "Fluidity and Plasticity," McGraw-Hill Book Co., 
Inc., 1922, p. 137. 

(9) Bingham and Spooner, J. Rheology, i, 221 (1932); Physics, t , 
387 (1933); Bingham and Geddes, ibid., S, 42 (1934). 
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expressions are practically1 constant, leaving- tiie 
latter to control the variation. But b (or b3) 
contains (DT)~l and D decreases, in-general, as T 
increases, so that the product becomes relatively 
insensitive to the temperature. 

In the following paper of this series, experi­
mental data on the temperature coefficients1 for 
several salts in anisole will be presented'and1 com'-
pared with the above theoretical discussion; It 
should be emphasized that the formulas- apply 
only to conductance data in the range of concen­
tration and dielectric constant where (1) repro'-
duces observed values. 

i n . Asymptotic Expansion for ks 

We shall now derive the expansion (6). for the 
triple ion constant which Was Used above. The 
final formula reproduces the previous values of-log 
k, which were obtained by planimeter integration, 
to within a few hundredths of a logarithm unit for 
values-of 63^ /10.18 

The general formula for k in our fourth paper11 

contains- an error which, fortunately, does Hot 
affect the results: the upper limit of integration 
for 6 should not extend to r for all values of the 
distance r. The limits are 0 and x for r ̂  2a and 
O'and 27r/3 fbr r = a. For 2a>r^a, the tipper 
limit is arc cos(r/2o). Integrating from (2ir/3) 
to T contributes a very small amount to' t t e 
integral, because theinttgrasnd' becomesunity for 
r = a, 6 = 2T/3 and approaches- zero exponen­
tially for larger values. Practically' the entire 
value of the integral for large (i. e., ^ 10) values 
of b comes from values of the integrand in the 
neighborhood of r = a>, 9 = 0. 

If distances are measured1 in multiples of a, we 
have then 

*_1 = TOGO J 1
 x'&x J0

 exp U " 

a+*+b2**.w*y*i"» (13) 

= 2rNa3I(b)/1000 
In (13), k~l is represented as the volume under a 

surface in the x-0 plane. As pointed out in the 
previous paragraph, thisVolume has an exponen­
tial peak near the point (1,0): we therefore look 

(10) For simplicity, we shall drop the subscript'on bt throughout' 
this section. 

(11) Fuoss and Kraus, THIS JOURNAL, 55, 2387 (1933). 

for the asymptotic expansion12 of /fe-1 by inte­
grating approximately near thispoint. 

Introducing new variables 5 and e by the equa­
tions 

S = x - 1 

e = S - 0 

we find for the integration near 0 = 0 the expres­
sion 

e 6 / 2 X) e ( i - 0 e ^ v i 6 d e 

which is practically equal to 
&s»/t/, 128 \ 

— v - w» + • • J (14) 

Fof the integration near 5 = 0, we have 

f (1 +2« '+ ! 1 J e - W u J 

whibh gives 

s O + il-+£ + •••) (15) 

Combining, the above results, we obtain 

m ^ g tm (i + 1 + o(j-«$)' (16) 

and 
- l n * ~ l n - 3 0 0 0 - + § - 2 1 n 6 + 

In ( l + 1 + 0(6-»)) (17) 

which' is the result- used' above; in- deriving-' (7). 
The' rte&five error in- using (17)' instead' of the 
pJafcia&ter" method1 to evaluate theTOg&rithm df k 
is-of'the-drdfer Of #w», because the l&HMg teriti' of 
(17) is b/2 and tiie erfttfis hi' terms containing-" b2 

in the: deaominatbfc 

Summary 

1. A theoretical derivation of the temperature 
coefficient of the conductance of electrolytes' in 
solvents1 of low dielectric constant is> presented: 

2. This: coefficient is shown- to contain' three 
terms: a viscosity term and two terms arising 
from the shift of the simpler ionic equilibria wfth 
temperature. 

3: The dependence of the coefficient on tem­
perature and concentration is discussed; 

4. An asymptotic expansion for the calculation 
of the triple ion constant, valid'fof solvents of di­
electric constant under 10, is obtained) 
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(12) Fuoss, ibtd., 56, 1030 (1934). 


